Return Styles: Pseud0ch, Terminal, Valhalla, NES, Geocities, Blue Moon.

Pages: 1-4041-8081-

fun ^ 10 x int ^ 40 = Ir2

Name: Anonymous 2008-10-11 22:59

How do I solve this equation?

Name: Anonymous 2008-10-12 11:00

>>1
Can't be done. Obama is black.

Name: Anonymous 2008-10-12 11:54

what am i solving for?

Name: Anonymous 2008-10-12 15:35

>>3
World peace.

Name: Anonymous 2008-10-12 16:21

Can't be done i'm not white.

Name: 将軍 2008-10-12 16:50

According to the formula, this world's possibility has been killed

Name: 4tran 2008-10-12 18:40

>>6
General!  Our base is under attack!

Name: Anonymous 2008-10-13 2:54

Go back to bed, Nishijou Takumi.

Name: anon 2008-12-01 17:12

I looked everywhere and I conclude that this equation is either complete nonsense made for the game/anime or it is obscure.

Name: Anonymous 2008-12-01 19:52

>>9

It clearly involves twice an electrical current and resistance, uh... an integer to the fortieth with the Cartesian product of fun to the tenth... uhhh....

Name: Anonymous 2008-12-01 20:13

stop bumping old threads faggot

>>9

Name: Pride 2010-03-20 11:53

I like Cookies

Name: Lânâ 2010-08-21 17:42

Well, with this kind of equation I´m gettin´some Chaos Head ?!

Name: Anonymous 2010-08-22 2:30

>>12
Way to bump a five year old thread.

Name: Anonymous 2010-09-02 0:45

whose eyes are those?

Name: 6sji7 2010-09-14 22:39

whose eyes are those eyes?

Name: Choriisu 2010-09-18 4:34

:)

Name: Anonymous 2010-09-18 16:32

you solve it like this.

first you eliminate some useles distractions, that have no relevance to solution. you get 0 ^ 10 * 0 ^ 40 = 0 and now it's easy to solve, it's 0=0 , so the solution is "whose eyes are those eyes?"

Name: Anonymous 2010-10-04 1:43

\sum_{i=0}^nx_i

Name: ronelm2000 2011-01-25 8:20

fun^10 x int^40 = Ir2

fun is...well fun
int is...intelligence
I is an integer
r is reality

Oh yeah, it means that fun and intelligence can be used to totally change the reality of something. An alternate reality.

Name: Sir Hart 2011-05-05 16:38

Whose eyes are those eyes?

Name: Anonymous 2011-05-07 0:28

その目誰の目

Name: Anonymous 2011-05-07 2:56

IRC FOR EXPERT MATHEMATICS

Server:  whatisthiscomputer.dyndns.org
Channel: #trollchat

Name: Grim 2011-06-28 14:00

Hey, Knight-hart,
What are you talking about?

Name: Sena-shan 2011-07-15 18:36

What you've produced may destroy the world.

Name: SHOGUN 2011-07-25 11:31

その目誰の目?

Name: Misumi 2011-08-29 16:48

What the fuck is this Taku? No wonder you can't get any girls. I wish I can stay and chat, but I'm too busy necroing threads and scoring cute girls~

Name: Anonymous 2011-08-30 20:08

... therefore God exists.

Name: Kurugaya 2011-10-16 17:13

-> hoping for srs answers on 4chan.
I srsly hope u dont do dizz, OP

Name: Anonymous 2011-10-19 21:46

その目だれの目?

Name: Anonymous 2011-10-20 13:24

This means you found the formula of the destroying earth.congratulations,never say this formula to anybody!

Name: 2011-11-22 1:06

Name: 2011-11-22 1:06

Name: Anonymous 2011-11-27 17:54

Not sure if this helps.

Here is me trying to solve it with a computer.
It seems complicated.

http://sagenb.org/home/pub/3700/

Name: Anonymous 2011-11-27 17:55

[fun == 2^(1/10)*Ir^(1/10)*e^(1/5*I*pi)/int^4, fun == 2^(1/10)*Ir^(1/10)*e^(2/5*I*pi)/int^4, fun == 2^(1/10)*Ir^(1/10)*e^(3/5*I*pi)/int^4, fun == 2^(1/10)*Ir^(1/10)*e^(4/5*I*pi)/int^4, fun == -2^(1/10)*Ir^(1/10)/int^4, fun == 2^(1/10)*Ir^(1/10)*e^(-4/5*I*pi)/int^4, fun == 2^(1/10)*Ir^(1/10)*e^(-3/5*I*pi)/int^4, fun == 2^(1/10)*Ir^(1/10)*e^(-2/5*I*pi)/int^4, fun == 2^(1/10)*Ir^(1/10)*e^(-1/5*I*pi)/int^4, fun == 2^(1/10)*Ir^(1/10)/int^4]

Name: Anonymous 2011-11-27 17:56

[int == 2^(1/40)*Ir^(1/40)*e^(1/20*I*pi)/fun^(1/4), int == 2^(1/40)*Ir^(1/40)*e^(1/10*I*pi)/fun^(1/4), int == 2^(1/40)*Ir^(1/40)*e^(3/20*I*pi)/fun^(1/4), int == 2^(1/40)*Ir^(1/40)*e^(1/5*I*pi)/fun^(1/4), int == (1/2*I + 1/2)*2^(21/40)*Ir^(1/40)/fun^(1/4), int == 2^(1/40)*Ir^(1/40)*e^(3/10*I*pi)/fun^(1/4), int == 2^(1/40)*Ir^(1/40)*e^(7/20*I*pi)/fun^(1/4), int == 2^(1/40)*Ir^(1/40)*e^(2/5*I*pi)/fun^(1/4), int == 2^(1/40)*Ir^(1/40)*e^(9/20*I*pi)/fun^(1/4), int == I*2^(1/40)*Ir^(1/40)/fun^(1/4), int == 2^(1/40)*Ir^(1/40)*e^(11/20*I*pi)/fun^(1/4), int == 2^(1/40)*Ir^(1/40)*e^(3/5*I*pi)/fun^(1/4), int == 2^(1/40)*Ir^(1/40)*e^(13/20*I*pi)/fun^(1/4), int == 2^(1/40)*Ir^(1/40)*e^(7/10*I*pi)/fun^(1/4), int == (1/2*I - 1/2)*2^(21/40)*Ir^(1/40)/fun^(1/4), int == 2^(1/40)*Ir^(1/40)*e^(4/5*I*pi)/fun^(1/4), int == 2^(1/40)*Ir^(1/40)*e^(17/20*I*pi)/fun^(1/4), int == 2^(1/40)*Ir^(1/40)*e^(9/10*I*pi)/fun^(1/4), int == 2^(1/40)*Ir^(1/40)*e^(19/20*I*pi)/fun^(1/4), int == -2^(1/40)*Ir^(1/40)/fun^(1/4), int == 2^(1/40)*Ir^(1/40)*e^(-19/20*I*pi)/fun^(1/4), int == 2^(1/40)*Ir^(1/40)*e^(-9/10*I*pi)/fun^(1/4), int == 2^(1/40)*Ir^(1/40)*e^(-17/20*I*pi)/fun^(1/4), int == 2^(1/40)*Ir^(1/40)*e^(-4/5*I*pi)/fun^(1/4), int == -(1/2*I + 1/2)*2^(21/40)*Ir^(1/40)/fun^(1/4), int == 2^(1/40)*Ir^(1/40)*e^(-7/10*I*pi)/fun^(1/4), int == 2^(1/40)*Ir^(1/40)*e^(-13/20*I*pi)/fun^(1/4), int == 2^(1/40)*Ir^(1/40)*e^(-3/5*I*pi)/fun^(1/4), int == 2^(1/40)*Ir^(1/40)*e^(-11/20*I*pi)/fun^(1/4), int == -I*2^(1/40)*Ir^(1/40)/fun^(1/4), int == 2^(1/40)*Ir^(1/40)*e^(-9/20*I*pi)/fun^(1/4), int == 2^(1/40)*Ir^(1/40)*e^(-2/5*I*pi)/fun^(1/4), int == 2^(1/40)*Ir^(1/40)*e^(-7/20*I*pi)/fun^(1/4), int == 2^(1/40)*Ir^(1/40)*e^(-3/10*I*pi)/fun^(1/4), int == -(1/2*I - 1/2)*2^(21/40)*Ir^(1/40)/fun^(1/4), int == 2^(1/40)*Ir^(1/40)*e^(-1/5*I*pi)/fun^(1/4), int == 2^(1/40)*Ir^(1/40)*e^(-3/20*I*pi)/fun^(1/4), int == 2^(1/40)*Ir^(1/40)*e^(-1/10*I*pi)/fun^(1/4), int == 2^(1/40)*Ir^(1/40)*e^(-1/20*I*pi)/fun^(1/4), int == 2^(1/40)*Ir^(1/40)/fun^(1/4)]

Name: Anonymous 2011-11-27 17:57

[Ir == 1/2*fun^10*int^40]

Name: Anonymous 2011-11-27 22:55

\newcommand{\Bold}[1]{\mathbf{#1}}\left[\mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{1}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{1}{10} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{3}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{1}{5} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{\left(i + 1\right) \, 2^{\left(\frac{21}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)}}{2 \, \mbox{fun}^{\left(\frac{1}{4}\right)}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{3}{10} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{7}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{2}{5} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{9}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{i \, 2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{11}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{3}{5} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{13}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{7}{10} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{\left(i - 1\right) \, 2^{\left(\frac{21}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)}}{2 \, \mbox{fun}^{\left(\frac{1}{4}\right)}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{4}{5} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{17}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{9}{10} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{19}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = -\frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{19}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{9}{10} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{17}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{4}{5} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = -\frac{\left(i + 1\right) \, 2^{\left(\frac{21}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)}}{2 \, \mbox{fun}^{\left(\frac{1}{4}\right)}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{7}{10} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{13}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{3}{5} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{11}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = -\frac{i \, 2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{9}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{2}{5} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{7}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{3}{10} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = -\frac{\left(i - 1\right) \, 2^{\left(\frac{21}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)}}{2 \, \mbox{fun}^{\left(\frac{1}{4}\right)}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{1}{5} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{3}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{1}{10} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{1}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)}}{\mbox{fun}^{\frac{1}{4}}}\right]

Name: Anonymous 2011-11-27 22:55

$$\newcommand{\Bold}[1]{\mathbf{#1}}\left[\mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{1}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{1}{10} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{3}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{1}{5} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{\left(i + 1\right) \, 2^{\left(\frac{21}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)}}{2 \, \mbox{fun}^{\left(\frac{1}{4}\right)}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{3}{10} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{7}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{2}{5} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{9}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{i \, 2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{11}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{3}{5} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{13}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{7}{10} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{\left(i - 1\right) \, 2^{\left(\frac{21}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)}}{2 \, \mbox{fun}^{\left(\frac{1}{4}\right)}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{4}{5} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{17}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{9}{10} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{19}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = -\frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{19}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{9}{10} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{17}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{4}{5} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = -\frac{\left(i + 1\right) \, 2^{\left(\frac{21}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)}}{2 \, \mbox{fun}^{\left(\frac{1}{4}\right)}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{7}{10} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{13}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{3}{5} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{11}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = -\frac{i \, 2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{9}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{2}{5} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{7}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{3}{10} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = -\frac{\left(i - 1\right) \, 2^{\left(\frac{21}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)}}{2 \, \mbox{fun}^{\left(\frac{1}{4}\right)}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{1}{5} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{3}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{1}{10} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{1}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)}}{\mbox{fun}^{\frac{1}{4}}}\right]
$$

Name: Anonymous 2011-11-27 22:56

$\newcommand{\Bold}[1]{\mathbf{#1}}\left[\mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{1}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{1}{10} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{3}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{1}{5} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{\left(i + 1\right) \, 2^{\left(\frac{21}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)}}{2 \, \mbox{fun}^{\left(\frac{1}{4}\right)}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{3}{10} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{7}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{2}{5} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{9}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{i \, 2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{11}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{3}{5} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{13}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{7}{10} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{\left(i - 1\right) \, 2^{\left(\frac{21}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)}}{2 \, \mbox{fun}^{\left(\frac{1}{4}\right)}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{4}{5} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{17}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{9}{10} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{19}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = -\frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{19}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{9}{10} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{17}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{4}{5} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = -\frac{\left(i + 1\right) \, 2^{\left(\frac{21}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)}}{2 \, \mbox{fun}^{\left(\frac{1}{4}\right)}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{7}{10} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{13}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{3}{5} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{11}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = -\frac{i \, 2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{9}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{2}{5} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{7}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{3}{10} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = -\frac{\left(i - 1\right) \, 2^{\left(\frac{21}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)}}{2 \, \mbox{fun}^{\left(\frac{1}{4}\right)}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{1}{5} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{3}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{1}{10} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{1}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)}}{\mbox{fun}^{\frac{1}{4}}}\right]$

Name: Anonymous 2011-11-27 22:58

\sum_{i=0}^nx_i

Name: Anonymous 2011-11-27 22:58

$\sum_{i=0}^nx_i$

Name: Anonymous 2011-11-27 22:59

$$\sum_{i=0}^nx_i$$

Name: Anonymous 2011-11-27 23:16

[\newcommand{\Bold}[1]{\mathbf{#1}}\left[\mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{1}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{1}{10} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{3}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{1}{5} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{\left(i + 1\right) \, 2^{\left(\frac{21}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)}}{2 \, \mbox{fun}^{\left(\frac{1}{4}\right)}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{3}{10} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{7}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{2}{5} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{9}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{i \, 2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{11}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{3}{5} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{13}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{7}{10} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{\left(i - 1\right) \, 2^{\left(\frac{21}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)}}{2 \, \mbox{fun}^{\left(\frac{1}{4}\right)}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{4}{5} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{17}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{9}{10} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{19}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = -\frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{19}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{9}{10} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{17}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{4}{5} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = -\frac{\left(i + 1\right) \, 2^{\left(\frac{21}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)}}{2 \, \mbox{fun}^{\left(\frac{1}{4}\right)}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{7}{10} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{13}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{3}{5} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{11}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = -\frac{i \, 2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{9}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{2}{5} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{7}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{3}{10} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = -\frac{\left(i - 1\right) \, 2^{\left(\frac{21}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)}}{2 \, \mbox{fun}^{\left(\frac{1}{4}\right)}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{1}{5} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{3}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{1}{10} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{1}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)}}{\mbox{fun}^{\frac{1}{4}}}\right]\]

Name: Anonymous 2011-11-30 3:09


\left[\mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{1}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{1}{10} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{3}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{1}{5} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{\left(i + 1\right) \, 2^{\left(\frac{21}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)}}{2 \, \mbox{fun}^{\left(\frac{1}{4}\right)}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{3}{10} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{7}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{2}{5} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{9}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{i \, 2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{11}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{3}{5} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{13}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{7}{10} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{\left(i - 1\right) \, 2^{\left(\frac{21}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)}}{2 \, \mbox{fun}^{\left(\frac{1}{4}\right)}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{4}{5} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{17}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{9}{10} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(\frac{19}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = -\frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{19}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{9}{10} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{17}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{4}{5} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = -\frac{\left(i + 1\right) \, 2^{\left(\frac{21}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)}}{2 \, \mbox{fun}^{\left(\frac{1}{4}\right)}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{7}{10} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{13}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{3}{5} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{11}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = -\frac{i \, 2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{9}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{2}{5} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{7}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{3}{10} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = -\frac{\left(i - 1\right) \, 2^{\left(\frac{21}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)}}{2 \, \mbox{fun}^{\left(\frac{1}{4}\right)}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{1}{5} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{3}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{1}{10} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)} e^{\left(-\frac{1}{20} i \, \pi\right)}}{\mbox{fun}^{\frac{1}{4}}}, \mbox{int} = \frac{2^{\left(\frac{1}{40}\right)} \mbox{Ir}^{\left(\frac{1}{40}\right)}}{\mbox{fun}^{\frac{1}{4}}}\right]

Name: Anonymous 2011-12-05 20:29

hey i dont think I in the Ir2 is integer rather it would be inverted reality. and the 2 would be the combining of the inverted reality and the true reality.

Name: Azai 2012-01-01 22:02

Obviously, Ir stands for Iridium. Which is element number 77.

Name: Anonymous 2012-01-02 9:31

その目誰の目?

Name: Anonymous 2012-01-05 0:53

Name: Anonymous 2012-01-21 20:14

$x_I$

Name: Anonymous 2012-01-21 20:15

[math]x_i

Name: Anonymous 2012-01-21 20:16

[math]x_i[math]

Name: Anonymous 2012-01-28 20:15

fgxd

Name: Anonymous 2012-02-05 19:18

Dear diary, Today OP was a fag.

Name: Anonymous 2012-02-15 15:15

Kill me

Name: Anonymous 2012-02-15 15:16

Kill me

Name: Anonymous 2012-02-27 22:36

while having fun with a heighten intelligence you may blur the realms of your imagination with reality provided if the collective conscious see what you see.

simple version: if a smart man play a prank and said that pineapples are apples everyone around see it as true if they are less intelligent.

Name: Mracy 2012-03-03 19:59

>>20
Solved like a true physicist.

Name: Nothingness 2012-03-10 16:10

compounded of two bodies, viz. sol and Luna; is puffed
up, swells, putrefies, is raised up, and does increase by
the receiving from the animated nature and substance.
Our water, or vinegar as aforementioned, is the vinegar of
the mountains, i.e. of sol and Luna; and therefore it is
mixed with gold and silver, and sticks close to them
perpetually; and the body receives from this water a white
tincture, and shines with inestimable brightness. Who so
knows how to convert, or change the body into a medicinal
white gold, may easily, by the same white gold, change all
imperfect metals into the best or finest silver. And this
white gold is called b the philosophers "luna alba
philosophorum, argentum vivum, album fixum, aurum
alchymiae, fumus albus" and therefore without this our
antimonial vinegar the stone of the philosophers cannot be
made. The reason, is because in our vinegar there is a
double substance of argentum vivum, the one from
antimony, and the other from mercury sublimated, it does
give a double weight and substance of fixed argent vive,
and also augments therein the native colour, weight,
substance and tincture thereof.

Name: Nothingness 2012-03-10 16:11

compounded of two bodies, viz. sol and Luna; is puffed
up, swells, putrefies, is raised up, and does increase by
the receiving from the animated nature and substance.
Our water, or vinegar as aforementioned, is the vinegar of
the mountains, i.e. of sol and Luna; and therefore it is
mixed with gold and silver, and sticks close to them
perpetually; and the body receives from this water a white
tincture, and shines with inestimable brightness. Who so
knows how to convert, or change the body into a medicinal
white gold, may easily, by the same white gold, change all
imperfect metals into the best or finest silver. And this
white gold is called b the philosophers "luna alba
philosophorum, argentum vivum, album fixum, aurum
alchymiae, fumus albus" and therefore without this our
antimonial vinegar the stone of the philosophers cannot be
made. The reason, is because in our vinegar there is a
double substance of argentum vivum, the one from
antimony, and the other from mercury sublimated, it does
give a double weight and substance of fixed argent vive,
and also augments therein the native colour, weight,
substance and tincture thereof.

Name: Anonymous 2012-04-02 14:07

I.. think its wierd..

Name: Anonymous 2012-04-16 10:47

You have been into chaos head soo much watch new anime man!

Name: Anonymous 2012-04-16 12:17

what

Name: Anonymous 2012-04-17 0:59

i like pie

Name: Anonymous 2012-05-06 2:13

Thomas Covenant. The White Gold Wielder

Name: Anonymous 2012-05-06 19:26

その目誰の目

Name: Anonymous 2012-05-09 9:21

What the shit is this? Honestly fun ^ 10 x int ^ 40 = Ir2 means
fun ^ 10 =10fun
int. ^ 40 = your iq is 40 ( your retarted)
ir2 is just the interior raito of your brain
so 10 things are fun to you because your brain is small and can't handle more. Duh

Name: Anonymous 2012-05-13 1:37

guise, i think Ir2 could mean lierally:
I are two (years old)

Name: Ayase 2012-05-13 23:10

This is the incantaion that kind Gladial will use to plunge this world into Chaos. Quit wasting time, Takumi, find your Di-sword. If you don't the Black Knights will not be able to stop what has been set into motion.

Name: Anonymous 2012-05-21 1:20

その目だれの目
how it's written in the game. i don't see 誰 anywhere

Name: Shogun 2012-05-29 13:53

Pie suki da ta.

Name: Anonymous 2012-08-22 19:51

It could only be solved if you had an IBN 5100. Go to akihabara and find one, I hear this dude who looks like a chick has one. Ruki or something.

Name: Shumatsu 2012-09-03 16:18

Hello

Name: 4ct !3lWjo8kf8k 2012-09-08 18:40

Assume a Ding-a-Ling, if you have it not.

Name: Anonymous 2012-11-22 11:16

その目だれの目?

Name: Hououin Kyouma 2012-12-21 1:02

>>72
Hey, you, The Neidthart! I know it's you, you can not trick me! Dare you not to touch my IBN5100! Wait, are you cooperating with "Organization"? Damn, I should have guessed... But you can not scare me with such a bullshit! Who do you think I am? I'm the insane mad scientist Hououin Kyouma!
Go find your own computer, or I will release my right hand... I'm sure you don't want that to happen!

Name: instantly stupid 2012-12-29 10:20

fun might be function the ^ stands fore multiplucation the x is a verible int is internet the ir is a persons veuw on realety the 2 is dubling it so all you have to do is find x and you would hav theretical mind altration using some sortive of brodcasting sistum lick cp or radio p.s whare did you come up with this
whose eye are those are?

Name: sono me dare no me? 2012-12-29 10:33

sono me dare no me?

Name: John Titor 2013-01-15 4:50

This equation is not one that will be solved for at least the next 50 years, don't worry about it until then.

Name: Ushiromiya Battler 2013-01-28 20:48

あぁ、駄目だ駄目だ,全然駄目だ!

Name: Lightning-Fast Knight-hart 2013-03-15 7:28

kiLL mE

Name: Anonymous 2013-03-16 11:55

Name: Anonymous 2013-03-29 8:10

lel

Name: Ginger Meggs 2013-03-31 11:46


GINGER MEGGS


Mr Canehard : "OKAY THEN. MEGGS I'LL RE-FRAME THE QUESTION WITH SOMETHING YOU CAN RELATE TO!

IF THERE ARE 5 BIRDS SITTING ON A FENCE...

..AND YOU FLING A ROCK AT ONE OF THEM...

HOW MANY BIRDS DO YOU HAVE LEFT OVER?"

Silence

Ginger : "NONE!"

Mr Canehard : "AND HOW DO YOU FIGURE THAT..."

Ginger : "WHAT KIND OF STUPID BIRD HANGS AROUND AFTER HIS

MATE'S BEEN HIT BY A ROCK!?"



THE BACK OF AN ELEPHANT IS NOT A GOOD PLACE TO BE DURING A

FIREWORKS DISPLAY; ELEPHANTS HAVE NO REAL CAPACITY TO

DISTINGUISH BETWEEN FIREWORKS AND APOCALYPSE.



WWW.GINGERMEGGS.COM


Dist by Universal Uclick 3/31

Name: Anonymous 2013-08-10 0:55

WHOSE EYES ARE THOSE EYES

Name: Anonymous 2013-09-21 10:13

Bump?

Name: Anonymous 2013-09-21 10:13

Bump?

Name: EJ 2013-12-10 21:26

Fun = Function
Int = Internet and or Intelligence
Ir2 = A person's own view on reality
Basically if you could solve this equation you would have a device that has the sole function of obscuring or blurring a persons view on reality using waves of some sort on parts of their brain, making them easily controllable and submissive.

Name: Anonymoos 2014-01-30 10:23

bump

Name: Anonymous 2014-03-09 0:29

bump

Name: Anonymous 2014-03-15 13:53

fun = lel m8 wanna fite me

lelchin

Don't change these.
Name: Email:
Entire Thread Thread List