Return Styles: Pseud0ch, Terminal, Valhalla, NES, Geocities, Blue Moon. Entire thread

Tripcode decoder?

Name: Anonymous 2007-12-03 19:48

is there anyway to convert a tripcode into the password for that tripcode, im using tripsage and I see that you can put in a word you want to see in a trip code and it produces results of passwords that would produce a tripcode with those letters in it, so if we were to take a complete tripcode someone has and enter it into that field, in theory it should eventually produce the 1 password that produces that tripcode, however i have a core 2 duo e6600 which can run 170,000 crypts per second but with over 10^80 possible combinations(numbers + letters + capital letters + symbols, and 10 characters in a tripcode) it would take litteraly much more than trillions of years to run through every combination. Any other suggestions?

Name: Anonymous 2009-04-07 19:42

>>613

primes = 2 : 3 : 5 : 7 : [k + r | k <- [0, 30..], r <- [11, 13, 17, 19, 23, 29, 31, 37], primeTest (k + r)]
    where primeTest n = all ((0 /=) . mod n) . takeWhile ((n >=) . join (*)) $ drop 3 primes

bitCount 0 = 0
bitCount n = uncurry (+) . (first bitCount) $ divMod n 2

swing n | n < 33 = genericIndex smallOddSwing n
        | True   = product pList
    where smallOddSwing = [1, 1, 1, 3, 3, 15, 5, 35, 35, 315, 63, 693, 231, 3003, 429, 6435, 6435, 109395, 12155, 230945, 46189, 969969, 88179, 2028117, 676039, 16900975, 1300075, 35102025, 5014575, 145422675, 9694845, 300540195, 300540195]
          pListA q p prime = let x = div q prime in case x of
                                                         0 -> case p of
                                                                   1 -> []
                                                                   _ -> [p]
                                                         _ -> pListA x (p * prime ^ (mod x 2)) prime
          pListB = (filter ((1==) . flip mod 2 . div n) . takeWhile (<= div n 3) $ dropWhile ((<= n) . (^2)) primes)
          pListC = takeWhile (<= n) $ dropWhile (<= div n 2) primes
          pList = (concatMap (pListA n 1) . takeWhile ((n >=) . (^2)) $ tail primes) ++ pListB ++ pListC

recFactorial n | n < 2 = 1
               | True  = (recFactorial $ div n 2) ^ 2 * swing n

factorial n | n < 20 = product [2..n]
            | True   = recFactorial n * 2 ^ (n - bitCount n)

Newer Posts